Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis.

نویسندگان

  • Lisa M Baye
  • Brian A Link
چکیده

During retinal development, neuroepithelial progenitor cells divide in either a symmetric proliferative mode, in which both daughter cells remain mitotic, or in a neurogenic mode, in which at least one daughter cell exits the cell cycle and differentiates as a neuron. Although the cellular mechanisms of neurogenesis remain unknown, heterogeneity in cell behaviors has been postulated to influence this cell fate. In this study, we analyze interkinetic nuclear migration, the apical-basal movement of nuclei in phase with the cell cycle, and the relationship of this cell behavior to neurogenesis. Using time-lapse imaging in zebrafish, we show that various parameters of interkinetic nuclear migration are significantly heterogeneous among retinal neuroepithelial cells. We provide direct evidence that neurogenic progenitors have greater basal nuclei migrations during the last cell cycle preceding a terminal mitosis. In addition, we show that atypical protein kinase C (aPKC)-mediated cell polarity is essential for the relationship between nuclear position and neurogenesis. Loss of aPKC also resulted in increased proliferative cell divisions and reduced retinal neurogenesis. Our data support a novel model for neurogenesis, in which interkinetic nuclear migration differentially positions nuclei in neuroepithelial cells and therefore influences selection of progenitors for cell cycle exit based on apical-basal polarized signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium.

During the development of the vertebrate nervous system, mitosis of neural progenitor cells takes place near the lumen, the apical side of the neural tube, through a characteristic movement of nuclei known as interkinetic nuclear migration (INM). Furthermore, during the proliferative period, neural progenitor cells exhibit planar cell divisions to produce equivalent daughter cells. Here, we exa...

متن کامل

Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis.

A critical feature of vertebrate neural precursors is the to-and-fro displacement of their nuclei as cell cycle progresses, thus giving rise to a pseudostratified epithelium. This nuclear behavior, referred to as interkinetic nuclear migration (INM), is translated into the disposition of the cell somas at different orthogonal levels depending on the cell cycle stage they are. The finding that i...

متن کامل

Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish.

Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells...

متن کامل

Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitoti...

متن کامل

Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain

A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 38  شماره 

صفحات  -

تاریخ انتشار 2007